파이썬 42

GAN

GAN - Basic Concept reference : GAN의 활용 사례와 발전 방향 ConditionalGAN(CGAN) 생성적 적대 신경망 논문으로 본 적대적 생성 신경망 GAN NEVER Engineering | 1시간만에 GAN(Generative Adversarial Network) 완전 정복하기 GAN(Generative Adversarial Network)은 특정 정보를 생성(Generative)하는 항과 이와 대립(Adversarial)하는 항으로 이루어진 망(Network)을 뜻한다. Training 생성자 모델 G(Generative)는 훈련 데이터 X 분포를 흉내내도록 훈련한다 판별자 모델 D(Discriminator, Adversarial)는 생성자 모델 G가 생성한 데이터가 진..

LGBM

LGBM(Light Gradient Boosting Machine) LightGBM's documentation LightGBM 주요 파라미터 정리 LightGBM이란? LGBM은 'Light'(==fast)하고 또 'Light'(==low memory)하다. 그만큼 또 예민하다는 단점이 있다. 예민하다는 것은 과적합(Overfitting)되기 쉽다는 것이며 1만 개 이하의 적은 데이터셋을 다루기에는 적합하지 않은 모델이다. LGBM을 사용할 때에는 과적합에 특히 유의해야 하며 아래의 하이퍼파라미터들을 통해 학습을 조절할 필요가 있다. max_depth Tree의 깊이가 깊을 수록 당연하게도 train set에 더 가까운 가중치를 학습하게 된다. 다른 모델을 사용할 때보다 현저하게 max_depth를 줄..

xgboost

XGBoost(eXtreme Gradient Boost) 캐글로 배우는 머신러닝 #10 XGBoost 파이썬 Scikit-Learn 형식 XGBoost 파라미터 XGBoost 알고리즘의 개념 이해 머신러닝 앙상블(ensemble) xgboost란? XGBoost는 기존 Gradient Boosting 방식의 느리고, training set에 overfitting되는 문제를 어느 정도 해결한 고성능 ensemble 기법이다. 규제 Overfitting을 방지하도록 하이퍼파라미터를 통해 규제할 수 있다. reg_alpha : L1 규제 reg_lambda : L2 규제 early stopping 주로 딥러닝 학습에 파라미터로 사용되는 early stopping을 지원한다. model.fit(X_train, ..

sklearn - GridSearchCV

GridSearchCV reference : sklearn.model_selection.GridSearchCV(scikit-learn.org) 모형최적화, 데이터사이언스스쿨 [Chapter 4. 분류] 랜덤포레스트(Random Forest) 머신러닝 모델의 하이퍼파라미터를 조정하는 일은 매우 까다롭다. 아주 미묘한 파라미터 값 변화가 모델의 성능을 좌우하고, 모델마다 다양한 파라미터들이 유기적으로 얽혀있기 때문이다. GridSearchCV를 통하면 다양한 하이퍼파라미터 값을 미리 입력하고, 최적의 값과 해당 값으로 표현된 모델 정확도를 돌려받을 수 있다. from sklearn.model_selection import GridSearchCV params = {'n_estimators' : [10, 100..

파이썬 퀀트 분석 패키지 - ffn(Financial Functions for Python)

https://github.com/pmorissette/ffn GitHub - pmorissette/ffn: ffn - a financial function library for Python ffn - a financial function library for Python. Contribute to pmorissette/ffn development by creating an account on GitHub. github.com Python ffn 패키지는 퀀트 분석을 편하게 하도록 작성된 라이브러리다. 유용한 함수들을 많이 제공하고 있는데, 그중에서도 어렵지 않게 써먹을만한 함수들을 빠르게 익혀보자. Step 1. 데이터 추출 기본적으로 야후 파이낸스를 통해 데이터를 가져오게 되어있고, 데이터 로드 속도..

K-Nearest Neighbor Algorithm

K-Nearest Neighbor Algorithm(최근접 이웃 알고리즘) Reference : K-NN 알고리즘(K-최근접이웃) 개념 파이썬 라이브러리를 활용한 머신러닝, 한빛미디어 Classification Regression 1. Classification (n = 1) 기존에 분포하는 값 중 가장 가까운 값의 label을 현재 Test값의 label로 지정한다. (n > 1) 기존에 분포하는 값 중 가장 가까운 순서대로 n개의 값을 찾고, 가장 많이 나오는 label을 현재 Test값의 label로 지정한다. ex. N = 3일 때, 탐색 방식 ex. N = 3일 때, 코드 예시 from sklearn.model_selection import train_test_split X, y = mglear..

Precision vs Recall

Precision and Recall in an anomaly detection situation reference : Classification : Precision and Recall 분류성능평가지표 - Precision(정밀도), Recall(재현률) and Accuracy(정확도) Examples : Anomaly Detection 실제 이상 징후 : 1 실제 정상 징후 : 0 Timeseries1112131415161718192022232425 Actual-Anm 0 0 0 0 0 0 0 0 0 1 0 1 1 1 threshold > Detect_Anm 0 0 0 0 0 0 0 0 0 0 0 1 1 1 True-Pstv T T T False-Ngtv F True-Ngtv T T T T T T T..

파이썬으로 최적의 포트폴리오 비율 찾기 (한국 주식,국채 + 미국 주식,국채)

주식 시장의 난이도가 올라가면서 개인 투자자들도 자산 배분을 고려하고 있다. 자산 배분의 방식에는 여러 가지가 있겠지만 이번에는 미국과 한국 2개의 시장에만 투자하고, 각 시장에 대해 채권과 주식을 고르게 배분하는 전략으로 전개하고자 한다. 안전자산인 채권과 위험자산 주식을 어떤 비율로 분배하는 것이 가장 효율적일까? Step 1. 야후 파이낸스 데이터 추출 Step 2. 일일 수익률 및 최종 수익률 확인 Step 3. 일일 수익률간 상관관계 시각화 Step 4. 변동성(위험) 대비 수익률 시각화 Step 5. 샤프 지수에 따른 포트폴리오 비율 시각화 Step 6. 사프 지수에 따른 포트폴리오 수익률 및 변동성 시각화 Step 7. 최적의 포트폴리오 비율 Step 1. 야후 파이낸스 데이터 추출 데이터는..

sklearn - RFE

RFE (recursive feature elimination) Reference : Python 데이터 분석 실무 04-06.모델 성과 개선 (WikiDocs) Simple, yet, Powerful Bankrupt Prediction Model sklearn.feature_selection.RFE, scikit-learn.org RFE는 주요 Feature를 선별해내는 기법 중 하나로 이름(Recursive feature elimination) 그대로 '반복적으로 feature를 제거해나가는' 방식이다. 대표적인 머신러닝 라이브러리 sklearn에서는 feature_selection 모듈을 제공한다. RFE는 아래와 같이 해당 모듈에서 import 할 수 있다. from sklearn.feature_..

1 2 3 4 5