3. 튜토리얼/자연어 처리 및 텍스트 분석 방법론 2

TF-IDF 행렬의 특이값 분해를 통한 LSA(Latent Semantic Analysis)의 구현과 빈도 기반 토픽 모델의 한계

Step 1. 토픽모델링이란 토픽모델링은 특정 문서의 확률적 카테고리를 나누는 비지도학습 방법론이며 기본적인 컨셉은 다음과 같다. 문서는 단어의 조합이다. 문서 내 함께 등장하는 단어는 서로 연관성이 있다. 모든 문서에서 자주 등장하는 단어는 특수한 의미를 내포하지 않는다. 반면, 그렇지 않은 단어는 특수한 의미를 내포한다. 즉, 모든 문서에서 자주 등장하지 않으면서 특정 단어들과 함께 등장하는 단어들은 서로 유사한 의미를 내포한다. 그러므로 단어의 조합인 문서는 의미가 있는 단어들의 비중에 따라 카테고리(Topic)가 결정된다. 우리는 이러한 컨셉의 프로세스에 따라 1.문서를 단어 조합으로 가공하고, 2~5.문서 내 각 단어들의 의미를 부여한 다음, 6.문서의 토픽을 결정해보도록 하자. Step 2. ..

단어의 의미를 고려한 문장 유사도 측정 방법 - 기저 벡터와 선형 변환

Step 1. 문장의 유사도를 구하는 방법 두 문서의 유사성은 어떻게 측정할 수 있을까? 문장의 길이? 아니면 주어, 동사, 목적어 등의 문법 구조? 그것보다는 얼마나 공통 '단어'를 많이 포함하고 있는가? 가 더 합리적으로 보인다. 실제로 수많은 전통적인 텍스트마이닝 방법론들은 이러한 단어 기반 유사도 측정 방식을 따르며, 현재 딥러닝, AI 시대에도 역시 문장 구조와 속성을 분석할 때 단어는 핵심 요소다. 이렇게 단어를 기준으로 문장 유사도를 구하기 위해서는 단어를 숫자로 변환해 줄 필요가 있다. 즉, 유사도 혹은 거리를 수학적으로 계산하기 위해 문장을 일종의 좌표평면 상에 놓을 수 있어야 하고 문장이 좌표평면에 놓이기 위해서는 문장을 구성하고 있는 단어들을 스칼라 혹은 벡터값으로 변환해줘야 하는 것..

1