사이킷런 5

sklearn - classification_report()

sklearn.metrics.classification_report reference : scikit-learn.org, sklearn.metrics.classification_report, document scikit-learn.org,sklearn.metrics.f1_score, document stackoverflow, How to interpret classification report of scikit-learn?,LaSul Answered Accuracy(정확도), Recall(재현율), Precision(정밀도), 그리고 F1 Score, eunsukimme Document : sklearn.metrix.classification_report(y_true, y_pred, *, Labels=N..

sklearn - GradientBoostingClassifier

GradientBoostingClassifier Gradient Boosting Model sklearn.ensemble.GradientBoostingClassifier 지도학습 - 그래디언트 부스팅 2.3.6 결정 트리의 앙상블, 텐서 플로우 블로그 GradientBoosting 모델은 RandomForest 모델과 달리 learning_rate를 통해 오차를 줄여나가는 학습 방식을 사용한다. RandomForest 모델은 말그대로 Random하게 Bagging, Tree를 생성한다. 하지만 GradientBoosting 모델은 Tree를 생성할 때마다 이전 Tree보다 오차를 줄이게 된다. 또한 개별 Tree의 깊이는 얕게 만들어내면서 오차가 줄어든 Tree를 계속해서 연결해나가는 구조다.(때문에, ..

K-Nearest Neighbor Algorithm

K-Nearest Neighbor Algorithm(최근접 이웃 알고리즘) Reference : K-NN 알고리즘(K-최근접이웃) 개념 파이썬 라이브러리를 활용한 머신러닝, 한빛미디어 Classification Regression 1. Classification (n = 1) 기존에 분포하는 값 중 가장 가까운 값의 label을 현재 Test값의 label로 지정한다. (n > 1) 기존에 분포하는 값 중 가장 가까운 순서대로 n개의 값을 찾고, 가장 많이 나오는 label을 현재 Test값의 label로 지정한다. ex. N = 3일 때, 탐색 방식 ex. N = 3일 때, 코드 예시 from sklearn.model_selection import train_test_split X, y = mglear..

sklearn - RFE

RFE (recursive feature elimination) Reference : Python 데이터 분석 실무 04-06.모델 성과 개선 (WikiDocs) Simple, yet, Powerful Bankrupt Prediction Model sklearn.feature_selection.RFE, scikit-learn.org RFE는 주요 Feature를 선별해내는 기법 중 하나로 이름(Recursive feature elimination) 그대로 '반복적으로 feature를 제거해나가는' 방식이다. 대표적인 머신러닝 라이브러리 sklearn에서는 feature_selection 모듈을 제공한다. RFE는 아래와 같이 해당 모듈에서 import 할 수 있다. from sklearn.feature_..

sklearn - confusion_matrix()

sklearn.metrics.confusion_matrix reference : sklearn.metrics.confusion_matrix, scikit-learn.org 분류 성능평가, 데이터사이언스스쿨 Document sklearn.metrics.confusion_matrix(y_true, y_pred, *, labels=None, sample_weight=None, normalize=None) 사용 예시 from sklearn.metrics import confusion_matrix y_true = [2, 0, 2, 2, 0, 1] y_pred = [0, 0, 2, 2, 0, 2] confusion_matrix(y_true, y_pred) array([[2, 0, 0], [0, 0, 1], [1, ..

1