3. 튜토리얼/시계열 예측 및 계량 분석 방법론 4

파이썬을 활용한 애플 주가수익률 예측 분석 - (3). 교차 검증 및 모델 선택

본 시리즈는 주가 데이터의 자기 상관(Auto-Correlation) 특성을 억제하고, 동시간대 연관 자산(Cross-Sectional) 수익률 및 지연 수익률을 통한 미래 주가 수익률 예측하는 내용을 담고 있다. 본 장에서는 (1). 데이터 확인 및 예측 안정성 확보, (2). 변수간 상관분석 및 예측변수 정상성 검정에 이어 예측 모델을 구현하는 세 번째 실습을 진행한다. 실습은 회귀(Regression) 예측을 위한 다양한 모델들을 일괄 구현한 다음, 교차검증(K-Fold Cross Validation)을 수행함으로써 각각의 성능을 비교 분석하는 방식으로 진행된다. Step 1. Train-Test Dataset Split 데이터는 이전 장에서 구축한 df_Xy를 사용한다. 예측 변수는 y, 애플 ..

파이썬을 활용한 애플 주가수익률 예측 분석 - (2). 변수간 상관분석 및 예측변수 정상성 검정

본격적으로 모델링을 수행하기 전에 변수간 상관관계가 어떤지, 예측변수의 정상성이 확보되었는지 확인할 필요가 있다. 특정 설명변수가 예측변수와 상관관계가 강하거나 특정 설명변수 간 상관관계가 강하다면 해당 변수를 유심히 살펴야 한다. 전자의 경우 예측변수에 후행하는 것은 아닌지, 후자의 경우 동일한 외생변수를 갖거나 둘 사이에 상호 인과성이 존재하는 것은 아닌지 등을 확인하고, 해당 변수를 소거하거나 집계를 통해 시점 혹은 분포를 변환해줘야 한다. 또한, 예측변수 내에 설명변수들로 하여금 예측변수를 추정하기 어렵도록 하는 특정 분포(추세, 계절성)의 존재 여부 역시 확인해야 한다. 예측변수 자체가 시간에 따라 그 분포(평균, 표준편차)를 달리한다면 단일변수를 통한 회귀분석은 물론 다중변수 모델링은 제대로 ..

파이썬을 활용한 애플 주가수익률 예측 분석 - (1). 데이터 확인 및 예측 안정성 확보

본 시리즈는 파이썬으로 시계열 자기상관 특성 및 마켓, 안전자산, 대체자산 등과의 동시간대 연관성을 분석하고 Apple Inc(AAPL) 주가를 예측한다. 튜토리얼 작성을 위해 금융전략을 위한 머신러닝(한빛미디어), 실전 시계열 분석(한빛미디어) 외 야후파이낸스 및 FRED API 공식문서 등을 참고하였으며 작업 과정에서 추가로 참고하게 되는 자료들은 이후 각 편 내에 서술하도록 하겠다. 1편에서는 간단히 데이터를 불러와 누락된 분포를 살피고, 시계열 기간을 동일하게 맞춘다. 그 다음, 예측에 필요한 데이터를 추출하기 위한 시계열 분석 작업을 간단히 수행하도록 한다. Step 1. Import Packages numpy와 pandas를 포함해 seaborn, matplotlib은 데이터 분석을 위해 언제..

벡터자기회귀 모형(VAR)을 활용한 다변량 예측 모델링 - 국내 주요 기업 주가 및 거래량 예측

Step 1. VAR 이란? VAR이란 Vector Autoregression, 벡터자기회귀 모형을 의미한다. 기본적인 자기회귀모형이 단변량 시계열 예측에서 사용된다면 벡터자기회귀모형은 다변량 예측에 사용된다. 즉, 2개 이상의 같은 기간에 대한 데이터셋이 서로 다른 변수로 서로 영향을 주는 관계인 경우 벡터자기회귀 모형을 사용한다. 단변량 예측에 사용되는 자기회귀 모형 AR, ARMA, ARIMA의 경우 특정 시점의 과거가 현재에 영향을 미치는 단방향 모형일 수 밖에 없다. 이와 달리 VAR은 각 시계열 변수가 서로 영향을 주며 이를 고려해 각 변수의 미래값을 전체 시계열 변수의 과거값으로부터 예측하므로 양방향 모형이다. 이러한 방향성은 변수간 관게를 보여주는 것이기도 하다.(VAR의 인자로 주어지는 ..

1