앙상블 2

파이썬을 활용한 애플 주가수익률 예측 분석 - (3). 교차 검증 및 모델 선택

본 시리즈는 주가 데이터의 자기 상관(Auto-Correlation) 특성을 억제하고, 동시간대 연관 자산(Cross-Sectional) 수익률 및 지연 수익률을 통한 미래 주가 수익률 예측하는 내용을 담고 있다. 본 장에서는 (1). 데이터 확인 및 예측 안정성 확보, (2). 변수간 상관분석 및 예측변수 정상성 검정에 이어 예측 모델을 구현하는 세 번째 실습을 진행한다. 실습은 회귀(Regression) 예측을 위한 다양한 모델들을 일괄 구현한 다음, 교차검증(K-Fold Cross Validation)을 수행함으로써 각각의 성능을 비교 분석하는 방식으로 진행된다. Step 1. Train-Test Dataset Split 데이터는 이전 장에서 구축한 df_Xy를 사용한다. 예측 변수는 y, 애플 ..

sklearn - GradientBoostingClassifier

GradientBoostingClassifier Gradient Boosting Model sklearn.ensemble.GradientBoostingClassifier 지도학습 - 그래디언트 부스팅 2.3.6 결정 트리의 앙상블, 텐서 플로우 블로그 GradientBoosting 모델은 RandomForest 모델과 달리 learning_rate를 통해 오차를 줄여나가는 학습 방식을 사용한다. RandomForest 모델은 말그대로 Random하게 Bagging, Tree를 생성한다. 하지만 GradientBoosting 모델은 Tree를 생성할 때마다 이전 Tree보다 오차를 줄이게 된다. 또한 개별 Tree의 깊이는 얕게 만들어내면서 오차가 줄어든 Tree를 계속해서 연결해나가는 구조다.(때문에, ..

1